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Arbitrarily Shaped Microstrip Structures
and Their Analysis with a Mixed
Potential Integral Equation

JUAN R. MOSIG, MEMBER, IEEE

Abstract —This paper gives a comprehensive description of the mixed
potential integral equation (MPIE) as applied to microstrip structures.
This technique uses Green’s functions associated with the scalar and vector
potential which are calculated by using stratified media theory and are
expressed as Sommerfeld integrals. Several methods of moments allowing
the study of irregular shapes are described. It is shown that the MPIE
includes previously published static and quasi-static integral equations.
Hence, it can be used at any frequency ranging from dc to higher order
resonances. Several practical examples including an L-shaped patch have
been numerically analyzed and the results are found to be in good
agreement with measurements.

I. INTRODUCTION

HE PRACTICAL advantages of microstrip structures
have been discussed in many papers and are now too
well known to be repeated here. On the other hand, it is
perhaps worthwhile to point out that such structures are

very well suited for mathematical modeling. This seldom -

mentioned “theoretical” advantage is mostly due to the
relatively simple geometry of microstrip structures and has
certainly contributed to their popularity. Indeed, every
analytical technique commonly used in electromagnetics
has been applied to microstrip, giving rise to a surprisingly
great number of different and apparently unrelated mod-
els.

In this paper, we will put the emphasis on the analysis of
microstrip structures having upper conductors of arbitrary
shape. The general term microstrip structures includes here
patches of finite size and discontinuities obtained by inter-
connecting several microstrip lines through a patch.

The purpose of many microstrip models is to provide an
equivalent circuit for a given structure. The simplest mod-
els yield lumped LC circuits, valid at low frequencies.
Improvements of these models introduce ohmic losses (a
series resistance) and dielectric losses (a parallel conduc-
tance). At higher frequencies, the microstrip structure can
no longer be represented by a classical RLC circuit. More
accurate models are then employed that take into account
the dynamic behavior of the fields and yield scattering or
impedance matrices with, in general, complex elements
varying with frequency. If the field analysis is made for an
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open microstrip structure, the port matrices (S or Z)
should include real terms accounting for the radiation
losses (surface and space waves).

Equivalent capacitances and inductances of a microstrip
structure can be obtained by solving, respectively, a static
integral equation [1], [2] and a quasi-static integral equa-
tion [3], [4]. But these models are restricted to low frequen-
cies, where the real part of any impedance parameter is
negligible and the imaginary part behaves like the reac-
tance of a classical LC circuit.

A more accurate model including dispersion is the wave-
guide /cavity model which leads directly to the scattering
matrix of the structure [5]. However, this model neglects
fringing fields as well as radiation and surface waves.
Therefore it is restricted to electrically thin substrates. The
same restriction applies to models based upon the planar
circuit concept [6]-[8].

The most general and rigorous treatment of microstrip
structures is given by the well-known electric field integral
equation (EFIE) technique, usually formulated in the spec-
tral domain [10], [11]. In this paper, we use a modification
of the EFIE, called the mixed potential integral equation
(MPIE), and we solve it in the space domain. The MPIE is
numerically stable and can be solved with efficient al-
gorithms [12]. Working in the space domain helps to keep
a good physical insight of the problem.

The MPIE was introduced by Harrington [13] and has
been extensively used for the analysis of wire antennas.
Here, the MPIE will be applied to microstrip introducing
specific kernels which account for dielectric layers and for
the ground plane. It is shown that the MPIE models can
be used at any frequency, from the static case up to the
determination of higher order modes in a resonant patch.
Several specializations to particular frequency ranges are
discussed in detail. Also, this formulation includes cou-
pling, dispersion, radiation losses, and surface waves and
therefore provides a powerful and flexible technique for
the study of microstrip structures.

II. THE MPIE FOR MICROSTRIP STRUCTURES

A. Initial Assumptions

We consider here microstrip structures where the sub-
strate and the ground plane have infinite transverse dimen-
sions (Fig. 1a). Theoretical developments are given here for
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Fig. 1. (a) y-z plane cut and (b) x-y plane.cut of a microstrip
structure and (c) associated problem for the evaluation of the Green
functions.

a single-layer substrate. Modifications needed to account
for multiple layers will be mentioned later on. Ohmic
losses in the upper conductor are included by introducing
a surface impedance equal to the ratio of the tangential
electric field to the surface current density. If standard
thin-film technology is used, the upper conductor thickness
(25-50 um) can be neglected against substrate thickness,
but is still many times greater than the skin depth at
microwave frequencies (6 pm for copper at 1 GHz). Hence
the upper conductor is modeled as an electric current sheet
and the surface impedance can be estimated as

Z,=(1+ j)nfpo/o - (1)

Dielectric losses will be accounted for by introducing, as
customary, a complex dielectric constant:

e, =€/ (1— jtand).

‘ (2)
Ohmic losses in the ground plane can be taken into
account by modifying the Green’s functions of the prob-
lem [14]. A simplified procedure keeps the Green’s func-
tions associated with an ideal ground plane and doubles
the resistivity of the upper conductor.

As mentioned in the introduction, radiation and surface
waves are. automatically included in this formulation. Fi-
nally, the convention exp (jw?) will be used throughout the

paper.

B. The Integral Equation

To set up an integral equation for the currents and the

~charges, we start with the boundary condition associated

with the tangential electric field in the surface S of the
upper conductor (Fig. 1(b)):

e, X[E®@+E®]=2ZJ. - (3)
Here, E(© is the excitation field and E) is the scattered

field, which can be derived from a scalar potential ¥ and a
vector potential 4 as

E®=— jod-vV. (4)

These potentials are in turn expressed, by means of the
corresponding Green’s functions G, G,, as superposition
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integrals of the charge and current densities ¢, and J:

V(e) =deS’GV‘(p|p')qs(p’) \ (5)

A(p) = [ 5 G(ole) 4(p)- (©)

Finally, the MPIE can be written as

e, XE©(p)=e, X [ijdS’aA(plp')-L(p’) :

4V fs ds'G,(pl0") g,(p) + Z,7,(p)| (7)

where charge and current densities are related through the
continuity equation ’
v-J + jog,=0.

Rigorously, the MPIE is a Fredholm integral of the -
second kind, but the term Z J, is usually small and the
MPIE behaves numerically as a Fredholm integral to the
first kind. Prior to solving (7) numerically with a method
of moments, the Green’s functions must be evaluated.
These functions correspond physically to the potentials

_created by unit point sources (Fig. 1(c)). Hence, their

determination can be done in the p—z plane. Once the
Green’s functions are computed and stored for the case
z=0, we can get rid of the z coordinate and perform all
the subsequent calculations in the x—y plane of Fig. 1(b).
In general, integral equation techniques reduce one 3-D
problem (x—y—-z) to two 2-D problems (p~z and x-y)
resulting in a numerically efficient approach. For instance,
going from free-space to multilayered substrates requires
only a modification of the Green’s functions, but the 2-D
problem in the x— y plane remains unchanged.

C. The Green’s Functions

A thorough study of the Green’s functions for micro-
strip structures can be found in previous works by the
author [15]. For sake of completeness, we will mention
here the final results for a single layer and for z =0.

For the dyadic G,, we consider only its x, y compo-
nents, since neither the z component of the current nor the
z component of the electric field need to be considered in
(7). By symmetry considerations, we have

G,(ple) =G (p—010) =gy(lp—¢")

K ’ s ’ g (‘p_bll) |
GAt(NP )= Gi(p—p 0) = { 4 0

(8)
St=XX, yy
St =Xy, PX.

(9)
The Green’s functions g, and g, show translational in-
variance in the x— y plane and therefore are only functions

of the source—observer distance R = |p — p’|. Their expres-
sions in terms of Sommerfeld integrals are [15]:

A(ug + utanhuh)
Dg Dym

2meogy(R) = j0°°d>\ J,(AR) (10)

/o) 82 R) = [ NG OR) 5= )
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where

Dig=uy+ucothuh Dy =e€,u,+utanhuh

and

ug=yN—ki  u=yN—ek}

with A being the dummy spectral variable.

TE (TM) surface waves appear as zeros of D (D)
and hence as poles of the functions to be integrated in (10)
and (11). It is worth pointing out that the result (9) stems
from the fact that the traditional approach of Sommerfeld
is used. However, it has been recently shown [16] that this
approach should be modified if the conductors are not
restricted to horizontal planes, in order to keep the unicity
of the scalar Green’s function G .

Stratified-media theory [17] allows the generalization of
(9) and (10) to multilayered substrates. The two-layer case
has been recently investigated in connection with micro-
strip radome. problems [18].

Efficient numerical evaluation of the integrals (10) and
(11) calls for quite sophisticated techniques [15]. Neverthe-
less, since the integrals are functions of only one space

variable, namely the source-observer distance, they can be

precomputed for a given range of values and stored as

D. Space and Spectral Domains

The MPIE deserves the qualification of the space-do-
main technique because once the Green’s functions have
been computed, we get rid of the spectral variable A and
the integral equation is effectively solved in. the x-y
plane. On the contrary, the spectral domain EFIE [10], [11]
keeps the calculations in the spectral plane until the final
steps. But it must be emphasized that both models are
physically equivalent and their differences are purely
numerical. Indeed, they are both rigorously derived from
Maxwell’s equations and if no approximations are made in
their numerical treatment, they should provide identical
results.
results.

II1. SPECIALIZATIONS OF THE MPIE

Fig. 2(a) shows a microstrip structure with two ports.
The . excitation fields are produced by an ac generator
connected to the input port, while the output port is
loaded by an arbitrary impedance. Surface currents and
charges exist in the upper conductor and from them the
port impedance matrix can be determined.

From a circuit point of view, two particular cases de-
serve consideration. In the first one (Fig. 2(c)) the genera-
tor is a dc¢ battery and the load is' an open circuit. No
current flow exists, and the sole unknown is the charge
density, whose determination allows the computation of
the capacitance of the microstrip structure. In the second
case, we have a low-frequency current generator at the
input port and a short circuit at the output port (Fig. 2(b)).
A divergenceless surface current flows through the closed
circuit. There is no surface charge and ;= — I,. From the
surface current, an inductance associated with the micro-
strip structure can be determined.

L1\ N N i
e e A T O LTI TLUCUTTLL

©
Fig. 2. Three possible excitations of a microstrip circuit: (a) dynamic
(time-harmonic), (b) quasi-static and (c) static.

Both cases are included in the MPIE model and give
rise, respectively, to static and quasi-static specializations
of the MPIE.

A. The Static Case

In the absence of currents, (7) becomes
e, XV [ d5'Gy(ole)4.(¢) = &: X EO(p).  (12)

In many practical situations, it is customary to assume that
the excitation field is created by some charge distribution
q'® via the same Green’s function. Then, (12) can be
rewritten as

e.xV [a5'Gy (ol a(e) + 4,()] =0 (1)

which implies, by integration over the tangential coordi-
nates, that

G (o100 [42(¢) + ()] = consant =U. (19

Instead of starting with an excitation charge, solving (13)
for the “scattered charge” g,, and finally computing the
voltage U with (14), it will frequently be easier to start by
assuming the voltage U known and considering (14) as an
integral equation for the total charge g{® + ¢,. This last
approach follows closely the circuit representation of Fig.
2(c), and corresponds to the well-known static integral
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equation for the evaluation of capacitances. The Green’s
function to be used in (12)~(14) can be found by setting
ko =0 in the general expression (10). The result is

2me,g, (R) = fowd}\ Jo(AR)(1+ €, coth AR) ™* (15)

or, expanding the sum inside the parentheses into powers

of exp(—2Ah) and integrating the resulting infinite series
term by term,

4meogy(R) = (1- n)[%o- —(1+m) i (- n)”‘lRi

n

(16)

with
1=(e,—1)[(¢,+1)

The series (16) is the well-known partial image representa-
tion of the static Green’s function, given by Silvester [19],
while the integral representation (15) was first used by
Patel [20]. Generalizations of (15) to multilayered sub-
strates can be found in [21].

R2=R*+4n*h2,

B. The Quasi-Static Case

The classical technique to obtain an approximated in-
tegral equation useful at low frequencies implies neglecting
losses and displacement currents. Taking the divergence of
(7) with Z_ = 0 gives

Jjwe, Vv X [SdS/G—A(pIp')-L(p’) =e, v X E©(p)

= — jopee, H(p) (17)
where the equivalence v-(e, X X) =e¢,(v X X) has been

used. Introducing now the del operator under the integra-
tion sign leads to

e |, ds'G(pl0)-J,(0")+ e, HO(p) =0  (18)

where the dyadic Green function associated with the mag-
netic field is p G, =V X G,. According to (9), its relevant
components are given by

pGir=—10g4/9y  pGif=084/0x.  (19)

Equation (18) simply expresses the fact that the total
normal magnetic field must vanish on the surface of loss-
less conductors at any frequency. However, since (18) is a
scalar equation, it does not suffice in general to determine
the two components of the surface current. The second
scalar equation is obtained by neglecting the displacement
current in Maxwell’s equations. Then v X H=J and,
consequently, J. is solenoidal, i.e.,

v-J,=0. (20)

The set of equations (18)—(20) defines the quasi-static
model.

As in the static case, it will sometimes be convenient to
introduce an excitation current J{©. Then, (18) is trans-
formed into ‘

e [ d5'Gulple)- [4(0) + L) =0 (1)
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and the system of equations (20) and (21) is solved taking
into account the additional condition
[die,g=1 (22)
c .
which relates the excitation surface current to the total
current entering the structure in Fig. 2(b).

Since displacement currents are neglected, the current
distribution satisfies a static Poisson equation. Conse-
quently, to ensure the internal coherence of the model, the
Green’s functions arising in (17), (18), and (21) must be
static too. At zero frequency, (11) becomes

(47/1) g4(R) = zfowdx Jo(AR)(1+coth An) ™

( 1 1 (23)
R YR*+4n?
which is the solution to the problem of a point source

above a ground plane. Therefore, the quasi-static model is
independent on the substrate permitivity.

1V. THE METHOD OF MOMENTS

In order to apply the MPIE to irregular microstrip
shapes, we need a very flexible numerical technique. The
most frequent choice is a method of moments with subsec-
tional basis functions [13]. In this approach, the upper
conductor is divided into elementary domains (cells) and
the basis functions defined over each cell. We have chosen
the rectangular cell as the simplest shape still able to
provide good approximations for many practical struc-
tures. More sophisticated shapes for the cells, such as
triangles [22] and quadrangles, have been used in scatter-
ing problems and could also be applied to microstrip
problems.

We also need to select the basis functions. In general,
each component of the surface current will depend on the
two coordinates x, y, but it is possible to use basis func-
tions which are, inside each cell, constant along the trans-
verse coordinate. This yields expansions for J, and J;,
which are discontinuous along, respectively, y and x, but
the associated charge is still nonsingular. Basis functions
ensuring continuity of the current in any direction, such as
bilinear expansions, may be used, but the improved actu-
racy of the results is balanced by the increased difficulty of
the computations.

The choice of test functions is also a crucial matter. To
illustrate this, three possible combinations of basis and test
functions will be described (Fig. 3). Other possibilities are
given in [25].

Case A) Rooftop and Galerkin

An interesting possibility is using overlapping rooftop
functions for the two components of the surface current
(Fig. 3(a)). Then, according to the continuity equation, the
basis functions for g, are 2-D pulse doublets. The MPIE is
tested by using the same rooftop functions and this yields
a Galerkin procedure.

Define 7, as the vector rooftop function associated with

H

two adjacent cells S;* and S;” (Fig. 4(a)). The union of
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Fig. 3. Some possible choices for the basis and test functions defined

over rectangular domains. All the two-dimensional functions consid-
ered are independent of the transverse coordinate.
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Fig. 4. (a) Longitudinal testing segments C, linking the centers of

adjacents cells (S;” and ;") and (b) transverse segments (C; and
C") containing the line charge densities in the point-matching ap-
proach.

these two cells will be simply denoted by S;. In general, we
need to consider N, x-directed functions and N, y-di-
rected functions, the total number being N=N,+ N,

Therefore,
e.Tix
I,= e T

you

i=1,2---N,

i=N,+1---N. (24)
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The current and the charge are expanded as

N
J,= Z o T;
i=1

(25)

where the «; are unknown coefficients and the functions
II,= —v-T, correspond to the pulse doublets.

Standard application of the method of moments yields a
matrix equation with the elements of the matrix given by

(26)

where the contribution of 4,V, and the ohmic losses are,
respectively,

a;= jwfsdsTi(o)'L'dS’EA(pIp')Tj(P’) (27)

N
jqu = Z aiHi
i=1

zij=aij+vij‘+lij‘

vy=— [ &TL(p) [ 4Gy (el IL(P)  (28)
je s, 5

A ORAOE (29)
Notice that a;; vanishes if 7; is perpendicular to T}, while
I,;=0 if there is no intersection between S, and ;. In
general the computation of each matrix element requires a
fourfold integral. Even if two integrals can be evaluated
analytically through an adequate change of variables, this
approach remains cumbersome and simpler possibilities
must be investigated.
Case B) Rooftop and Testing Along Segments

This modification has been suggested by Glisson and
Wilton [12] and successfully applied to microstrip reso-
nators and antennas [23].

The basis functions are the same as in A) but testing is
done along the segment C; linking the centers of celis S;"
and S;” (Fig. 4(a)). Thus we get, instead of (27)-(29),

= Jo [ - | Gulole)T,(o) (30

Uij = ;c:[g.dsl [GV(pi+ IP’) - GV(P; |p')] Hj(p/) ' (31) |

Ly= 2, [ d-T(p) (32)
where p;, p;~ denote the centers of the cells S;*, S;". These
expressions, simpler than (27)—(29), can be brought to
effective numerical evaluation [23].

In Section III, we have mentioned the fact that the
MPIE remains valid at low frequency and tends to the
static integral equation. However, the condition of the
matrix of moments worsens when the frequency decreases,
thus preventing accurate results. This drawback can be
removed by testing along the segments belonging to an
open tree and replacing the remaining segments by closed
loops [24]. According to Faraday’s law, a null circulation
of the electric field along closed loops is equivalent to
enforcing a zero average value of the normal magnetic
field inside the loop. Hence, the quasi-static integral equa-
tion (21) is included in the MPIE.
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Case C) 2-D Pulses and Pomt Matchmg ,

The s1mplest but still meaningful, combination of basis
and test functions expands the components of the current
over a set of 2-D pulses. In order to approximately satisfy
the appropriate edge conditions on the surface current,
these pulses are defined over domains which do not coin-
cide with the ongmal cells. Rather, each domain, symboli-
cally denoted by S; /2, is a combination of two cell’s halves
and can be considered as a two-dimensional extension of
the segment C, (Fig. 4(b)). -

The aSSOCIated charges are now line charges (Dirac’s
delta functions) distributed along two segments .C;* and
C; . (Fig, 4(b)). Testing the MPIE is performed by point
matching at the centers of segments C,. Only the compo-
nent of the electric field parallel to the segment is tested. A
general matrix element is still given by (26), but now we
have

a;;= jwe,- ds'G, A0’)-e; 33
i Jw -/:91/2 ACHY) i (33)

: are )-— ar'G ) (34
0= 75 L G (ode)= 75 [ a6y (ole) (39

=29, (39)

where §,; is the Kronecker symbol and e, [(e;) is a umt
vector parallel to C(C).

The Numerical Integration Problem

The differences between the several combinations of
basis and test functions disappear if an inaccurate numeri-
cal integration is used. For instance, it is meaningless to
apply a Galerkin approach of type A) and then perform
the integrations in (27)- (29) by using the mean-value
theorem, because the resulting algorithm will be more like
a point-matching technique. In this sense, the technique B)
can be considered a particular version of A) using a rather
loose integration technique.

A simplification of techmque B) uses for the current 2-D
pulses instead of roqftop functions, while keeping the 2-D
pulse doublets for the charge [12], [13]. The continuity
equation is no longer satisfied, but the approach can be
]uStlfled on numerical grounds as being technique B) with
an approx1mate surface integration.

V. MATHEMATICAL TREATMENT OF THE
EXCITATION

~ The excitation fields are seldom known in a direct way,
except in a few cases, such as exciting with a plane wave or
with ‘a series voltage gap generator (very unpractical in
microstrip). Therefore, the excitation fields must usually be
computed from a given distribution of currents arid charges.
The simplest model for the excitation is a vertical filament
of unit current (Dirac’s delta) acting on some point of the
upper conductor. This model is a first-order approxima-
tion of real-world coaxial pins but can only be used with
the method of moments of the type A), where the testing
integrations suffice to smooth out the delta’s singularity.
For techniques B) and C), a more accurate model of the
coaxial probe has been developed in [23].
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exp(-jkx)
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r eip(+ikx)

(@

(b),

Fig. 3. (2) Microstrip discontinuity showing the incident and reflected
waves in the feed line. (b) Approximate model totally neglecting the
feed line. (c) Approximate model partially neglecting the feed line. In
both (b). and (c). the field analysis yields Z,,, and the reflection
coefficient is estimated as (Z,-,, ~Z)/N(Z,,+ Z,), Z, being the char-
acteristic impedance of the feed line.

Concerning microstrip-fed structures (Fig. 5(a)); there
are several possibilities. The most obvious one neglects the
microstrip line in the field analysis and uses a vertical
filament at the insertion point in the edge of the patch
(Fig. 5(b)). Hence, the mathematical excitation is J, =
e,6(z). A better p0551b111ty, including dlscontlnmty effects
in the insertion zone, is to include a finite section of the
mlcrostnp line in the field analysis and to introduce a
series current generator at the point where the line has
been truncated (Fig. 5(c)). The generator can be mathe-
matically. described by a half-rooftop function bearing a

unit current.

These models for the excitation lead to values of the
input impedance. A more rigorous approach yielding di-
rectly the value of the reflection coefficient would require
special basis functions to represent the incident and re-
flected quasi-TEM waves on the semi-infinite feed line
[11] : ‘

VI. NUMERICAL RESULTS
A. The Linear Resonator

In order to study the convergence of the results with the

number of longitudinal cells, we consider first an open-cir-

cuited mlcrostnp line resonator with aspect ratio L/w=

37.4 and ¢, =1 (Fig. 6). Since this is a very narrow patch,

only longnudmal currents are considered. The numerical
algorithms of Section IV, labeled as before A), B), and C),
are applied with one cell along the transverse direction and
N cells along the longitudinal coordinate. For a fixed N,
the modulus of the determinant of the moments’ matrix:
shows a sharp minimum at the resonance. Fig. 6 gives the
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Fig. 6. The narrow linear resonator: convergence of the resonant
frequency as a function of the number N of cells for the three
techniques of Section IV.

normalized resonant frequency as a function of 1/N. This
allows graphical extrapolation for the case N = co.

Techniques B) and A) both converge quickly to an
extrapolated frequency L/A,= 0.459, which can be con-
sidered “numerically exact.” The relative error for N =8 is
0.9 percent for the testing-along segments algorithm B)
and only 0.1 percent for the Galerkin algorithm A). On the
other hand, point matching C) converges rather slowly and
the extrapolated value for infinity is slightly different
(L/\,=0.466). From the point of view of computation
time, B) is three times slower and A) seven times slower
than C). Hence the algorithm B) represents a good com-
promise and cells of length 0.05A ensure accuracy of 1
percent.

Fig 6 also gives results on a modification of algorithm B)
which allows for a transverse variation of the longitudinal
current. This modification, denoted B*), accounts for edge
effects, with a dependence of the type [1—(2y/w)?]/%
The predicted resonant frequency changes only by 0.7
percent, and this difference becomes even smaller if more
than one cell is allowed in the transverse direction.

B. The Rectangular Patch

The second test case is a wide rectangular patch of
length L =150 mm and aspect ratio L /w = 2 (Fig. 7). The
substrate parameters are h=3.175 mm, ¢,=2.56, and
tand = 0.0015.

The patch is excited by a coaxial probe at x=
58.33 mm, y=37.5 mm. To study the relevance of the
number of transverse cells, numerical tests were made with
a number of cells fixed along x (N =9) and variable along
y (M =3,5,7). Results for the input impedance near the
resonance are presented in the Smith chart of Fig. 7. The
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Fig. 7. The rectangular patch: convergence of the input impedance as a
function of the number of cells in the transverse direction (615-635
MHz).

extrapolated (M = o0) value of the resonant frequency is
628.9 MHz. The error is 0.2 percent for M =7 and still
only 0.7 percent for M = 3. This shows that the boundary
condition imposing infinite values for the current density
at the lateral edges can be neglected in the numerical
treatment of wide patches, without appreciable loss of
accuracy. It is also worth mentioning that all the points in
Fig. 7 are almost on the same curve. This means that the
impedance level is almost independent of the number of
transverse cells, M > 3 being enough for engineering accu-
racy.

The rectangular patch was also analyzed well below the
resonance for frequencies ranging from 50 to 500 MHz.
The input impedance R + jX normalized to 50 § is plotted
in Fig. 8. In addition to a small real part, which accounts
for ohmic losses, dielectric losses, and radiation, there is a
reactance whose limiting value at low frequency is —1/wC,
(dashed line), C, being the static capacitance of the patch
[12].

C. The L-Shaped Patch

To illustrate the performance of the MPIE when dealing
with irregular shapes, we have selected an L-shaped patch
(Fig. 9(a)). Its dimensions are ¢ =b =56 mm, and c=d =
28 mm. The substrate parameters are €, = 4.34, tan § = 0.02,
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Fig. 8. Normalized input impedance Z = (R + jX)/50 @ of a rectan-
gular patch. The static approximation Z=1/jwC, is given by the
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Flg 9. The L- shaped microstrip patch. (a) Decomposition into elemen-
tary cells showing the coaxial-fed ports A, B, C. (b) Equivalent circuit
at low frequency for a two-port excitation (A and B). (c) Equivalent
circuit near resonance for an one-port excitation (C).

and 7=0.8 mm, and the patch is divided into 75 squére
cells.

We looked first for hlgher order resonances, exciting the
patch with a coaxial probe C located at x=2.8 mm,
y=2.8 mm. Two resonances were found, at 1.555 GHz
and 2.536 GHz. A first resonance, at 0.998 GHz, is missed
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Fig. 10, -Real (in-phase) and imaginary (in quadrature) parts of the
surface current existing in the L-patch at the second resonance. The
maximum value of the current corresponds to the longest arrow.
Excitation current in the coaxial is 1+ jO A:

‘ due to the symmetrical locauon of the coaxial probe. Fig.

10 gives a vector representation for the real and imaginary
parts of the surface current density when the total excita-
tion current entering the patch is normalized to 1+ jO A.
As in any resonating situation, the imaginary part is
stronger and its pattern is independent of the coaxial
position. On the other hand, the real part, neglected in
many microstrip models, corresponds to near-field effects
created by the coaxial probe. This real part can modify
greatly the input reactance values, mainly in weak reso-
nances. ‘

The input impedance at the second resonance is given in
Fig. 11 and compared with measurements. The theoretical
predictions are very good, with an error of only 1 percent
in the resonant frequency, 4 percent in the maximum
resistance, and a slight difference in the reactance values.
The patch behaves as a parallel resonant circuit with a
small series reactance due to the probe (Fig. 9(c)). The
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Fig. 12. Normalized series impedance Z,=(R+ jX)/50 @ of an L-
shaped patch below the first resonance (see the equivalent circuit of
Fig. 9(b)). The dashed line represents the quasi-static approximation
Z,= jwLy /50 Q.

elements of the equivalent circuit are easily obtained from
the input impedance values of Fig. 12.

We have also considered the L-shaped patch as a two-
port network with coaxial excitations at points 4 (x,=
84 mm, y,=476 mm) and B (xz;=47.6 mm, y,=
8.4 mm). At low frequency, the patch behaves as a micro-
strip bend discontinuity and we can assume the equivalent
circuit of Fig. 9(b). The normalized values of the series
impedance R(w)+ jX(w) and of the parallel admittance
G(w)+ jB(w) are given in Figs. 12 and 13. Again, the
MPIE predicts correctly the frequency behavior of the
structure. In particular, as the frequency goes to zero the
reactance and susceptance values tend toward, respec-
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Fig. 13. Normalized parallel admittance ¥, = (G + jB)X50 © of an
L-shaped patch below the first resonance (see the equivalent circuit of
Fig. 9(b)). The dashed line represents the static approximation ¥, =
JwCy X50 Q.

tively, the quasi-static values wL, and wC;, obtained with
(14) and (21).

VIL

The mixed potential integral equation has been found to
be a very convenient tool for studying microstrip struc-
tures. Combined with a method of moments using subsec-
tional basis, this technique can easily analyze conductors
of irregular shape. Also, the MPIE remains valid at any
frequency and can be used for studying higher order
resonances as well as for characterizing microstrip discon-
tinuities well below the first resonance. Thus, the tech-
niques described in this paper are particularly useful for
problems where the frequency is too high for assuming a
quasi-static situation, but still too low for computing the
fields as expansions over the resonant modes.

In this paper, we have also pointed out the connections
existing between the MPIE and other models used for
microstrip. In particular the well-known static and quasi-
static integral equations are embedded in the MPIE, and
this explains why the proposed algorithms are successful in
providing first-order corrections to static capacitances and
steady-state inductances.

Convergence studies have shown that cells of linear
dimensions 0.05 A already give good results. Under this
condition, accurate theoretical values are obtained for
resonant frequencies, quality factors, and input imped-
ances of patch resonators. For discontinuities, the opti-
mum cell size to obtain an accurate equivalent circuit is
mainly related to the geometry of the upper conductor.

The MPIE includes surface waves and radiation. Multi-
layered substrates can be accommodated by suitable mod-
ifications of the Green’s functions. Handling multiple con-
ductors at different levels (stacked patches) is only a

CONCLUDING REMARKS
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matter of increasing the number of unknowns. Finally,
there are no theoretical restrictions to the substrate thick-

ness, though some of the excitation models discussed should

be improved to maintain good accuracy in the thick sub-
strate case. ]

The techniques of this paper can be applied to obtain
the equivalent circuit of any microstrip discontinuity. Ex-
citing the discontinuity with two lines of finite length, we
get a combined geometry whose transmission or chain
matrix T is obtained with the MPIE. Since the chain
matrices T, of each line are known, the chain matrix of the
discontinuity T, satisfies the relationship T'=T,T,,T;, and
* can be easily obtained. Work is in progress and results will
be reported in the near future.
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