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Arbitrarily Shaped Microstrip Structures
and Their Analysis with a Mixed

Potential Integral Equation

JUAN R. MOSIG, MEMBER, IEEE

A/retract —This paper gives a comprehensive description of the mixed

potential integral equation (MPIE) as applied to microstrip stroctores.

This technique uses Green’s functions associated with the scalar and vector

potential which are calculated by using stratified media theory and are

expressed as Sommerfeld integrals. Several methods of moments aflowirrg

the study of irregular shapes are described. It is shown that the MPIE

includes previously published static and quasi-static integral equations.

Hence, it can be used at any frequency ranging from dc to higher order

resonances. Several practical examples including an L-shaped patch have

been numerically analyzed and the results are found to be in good

agreement with measurements.

I. INTRODUCTION

T HE PRACTICAL advantages of microstrip structures

have been discussed in many papers and are now too

well known to be repeated here. On the other hand, it is

perhaps worthwhile to point out that such structures are

very well suited for mathematical modeling. This seldom

mentioned “theoretical” advantage is mostly due to the

relatively simple geometry of microstrip structures and has

certainly contributed to their popularity. Indeed, every

analytical technique commonly used in electromagnetic

has been applied to rnicrostrip, giving rise to a surprisingly

great number of different and apparently unrelated mod-

els.

In this paper, we will put the emphasis on the analysis of

microstrip structures having upper conductors of arbitrary

shape. The general term microstrip structures includes here

patches of finite size and discontinuities obtained by inter-

connecting several microstrip lines through a patch.

The purpose of many microstrip models is to provide an

equivalent circuit for a given structure. The simplest mod-

els yield lumped LC circuits, valid at low frequencies.

Improvements of these models introduce ohmic losses (a

series resistance) and dielectric losses (a parallel conduc-

tance). At higher frequencies, the microstrip structure can

no longer be represented by a classical RLC circuit. More

accurate models are then employed that take into account

the dynamic behavior of the fields and yield scattering or

impedance matrices with, in general, complex elements

varying with frequency. If the field analysis is made for an
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open microstrip structure, the port matrices (S or Z)

should include real terms accounting for the radiation

losses (surface and space waves).

Equivalent capacitances and inductances of a microstrip

structure can be obtained by solving, respectively, a static

integral equation [1], [2] and a quasi-static integral equa-

tion [3], [4]. But these models are restricted to low frequen-

cies, where the real part of any impedance parameter is

negligible and the imaginary part behaves like the reac-

tance of a classical LC circuit.

A more accurate model including dispersion is the wave-

guide/cavity model which leads directly to the scattering

matrix of the structure [5]. However, this model neglects

fringing fields as well as radiation and surface waves.

Therefore it is restricted to electrically thin substrates. The

same restriction applies to models based upon the planar

circuit concept [6]–[8].

The most general and rigorous treatment of microstrip

structures is given by the well-known electric field integral

equation (EFIE) technique, usually formulated in the spec-

tral domain [10], [11]. In this paper, we use a modification

of the EFIE, called the mixed potential integral equation

(MPIE), and we solve it in the space domain. The MPIE is

numerically stable and can be solved with efficient al-

gorithms [12]. Working in the space domain helps to keep

a good physical insight of the problem.

The MPIE was introduced by Barrington [13] and has

been extensively used for the analysis of wire antennas.

Here, the MPIE will be applied to microstrip introducing

specific kernels which account for dielectric layers and for

the ground plane. It is shown that the MPIE models can

be used at any frequency, from the static case up to the

determination of higher order modes in a resonant patch.

Several specializations to particular frequency ranges are

discussed in detail. Also, this formulation includes cou-

pling, dispersion, radiation losses, and surface waves and

therefore provides a powerful and flexible technique for

the study of microstrip structures.

II. THE MPIE FOR MICROSTRIP STRUCTURES

A. Initial Assumptions

We consider here microstrip structures where the sub-

strate and the ground plane have infinite transverse dimen-

sions (Fig. la). Theoretical developments are given here for
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Fig. 1. (a) y – z plane cut and (b) x– y plane’ cut of a microstrip
structure and (c) associated problem for the evaluation of the Green
functions.

a single-layer substrate. Modifications needed to account

for ~ultiple layers will be mentioned later on. Ohmic

losses in the upper conductor are included by introducing

a surface impedance equal to the ratio of the tangential

electric field to the surface current density. If standard

thin-film technology is used, the upper conductor thickness

(25-50 pm) can be neglected against substrate thickness,

but is still many times greater than the skin depth at

microwave frequencies (6 p.m for copper at 1 GHz). Hence

the upper conductor is modeled as an electric current sheet

and the surface impedance can be estimated as

Z,=(l+j)lm. (1)

Dielectric losses will be accounted for by introducing, as

customary, a complex dielectric constant:

c,=cj(l-jtan~). (2)

Ohmic losses in the ground plane can be taken into

account by modifying the Green’s functions of the prob-

lem [14]. A simplified procedure keeps the Green’s func-

tions associated with an ideal ground plane and doubles

the resistivity of the upper conductor.

As mentioned in the introduction, radiation and surface

waves are automatically included in this formulation. Fi-

nally, the convention exp ( jal ) will be used throughout the

paper.

B. The Integral Equation

To set up an integral equation for the currents and the

charges, we start with the boundary condition associated

with the tangential electric field in the surface S of the

upper conductor (Fig. l(b)):

e= X[E(e) +E(s) ]=z,~. (3)

Here, E(e) is the excitation field and E(s) is the scattered

field, which can be derived from a scalar potential V and a

vector potential A as

E(s)= – juA –VV. (4)

These potentials are in turn expresse~ by means of the

correi.pending Green’s fUnCtiOnS G V, CA, as supeqosition

integrals of the charge and current densities

V(p) =/cis’Gv(plp’)q, (p’)
s
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4, and 4:

(5)

A(p) =~ds’:A(plp’).l( p’). (6)

Finally, the MPIE can be written as

[
ezXE(e)(p) =ez X j@~dY’FA(PIP’).z(P’)

.

J I+V ds’Gv(plp’)q,(#) +z.4(P) (’7)
s

where charge and current densities are related through the

continuity equation

v.~+jwq, =O.

Rigorously, the MPIE is a Fredholm integral of the .

second kind, but the term Z, J, is usually small and the

MPIE behaves numerically as a Fredholm integral to the

first kind. Prior to solving (7) numerically with a method

of moments, the Green’s functions must be evaluated.

These functions correspond physically to the potentials

created by unit point sources (Fig. l(c)). Hence, their

determination can be done in the p –z plane. Once the

Green’s functions are computed and stored’ for the case

z = O, we can get rid of the z coordinate and perform all

the subsequent calculations in the x - y plane of Fig. l(b).

In general, integral equation techniques reduce one 3-D

problem (x – y –z) to two 2-D problems (p-z and x – y)

resulting in a numerically efficient approach. For instance,

going from free-space to multilayered substrates requires

only a modification of the Green’s functions, but the 2-D

problem in the x – y plane remains unchanged.

C. The Green’s Functions

A thorough study of the Green’s functions for micro-

strip structures can be found in previous works by the

author [15]. For sake of completeness, we will mention

here the final result~for a single layer and for z = O.

For the dyadic GA, we consider only its ~, Y compo-

nents, since neither the z component of the current nor the

z component of the electric field need to be considered in

(7). By symmetg considerations, we have

GV(PIP’) ‘Gv(P-P’lo) ‘gv(lP-P’l) (8)

{

&4(lP–P’1) .w=xx, yy
G;’( plP’) = G,j’(P– P’lo) =

o St = Xy, yx.

(9)

The Green’s functions g v and g~ show translational in-

variance in the x – y, plane and therefore are only functions

of the source–observer distance R = IP – p’!. Their expres-

sions in terms of Sommerfeld integr~s are [15]:

A(uO+utanhuh)
2rfogv(R) = ~Wd UO(AR)

DT~ Dw
.

(lo)

(11)
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where

DT~ = UO+ ucothuh ‘TM = c#O + Utanhd?

and

F(=T2. 4.= A –k. u= ~z–ckz

with A being the dummy spectral variable.
TE (TM) surface waves appear as zeros of. . DTE (DTM)

and hence as poles of the functions to be integrated in (10)
and (11). It is worth pointing out that the result (9) stems
from the fact that the traditional approach of Sommerfeld
is used. However, it has been recently shown [16] that this
approach should be modified if the conductors are not
restricted to horizontal planes, in order to keep the unicity
of the scalar Green’s function G”.

Stratified-media theory [17] allows the generalization of
(9) and (10) to multilayered substrates. The two-layer case
has been recently investigated in connection with micro-
strip radome problems [18].

Efficient numerical evaluation of the integrals (10) and
(11) calls for quite sophisticated techniques [15]. Neverthe-
less, since the integrals are functions of only one space
variable, namely the source–observer distance, they can be
precomputed for a given range of values and stored as

D. Space and Spectral Domains

The MPIE deserves the qualification of the space-do-
main technique because once the Green’s functions have
been computed, we get rid of the spectral variable A and
the integral equation is effectively solved in the x – y
plane. On the contrary, the spectral domain EFIE [10], [11]
keeps the calculations in the spectral plane until the final
steps. But it must be emphasized that both models are
physically equivalent and their differences are purely
numerical. Indeed, they are both rigorously derived from
Maxwell’s equations and if no approximations are made in
their numerical treatment, they should provide identical
results.

results.

III. SPECIALIZATIONS OF THE MPIE

Fig. 2(a) shows a microstrip structure with two ports.
The excitation fields are produced by an ac generator
connected to the input port, while the output port is
loaded by an arbitrary impedance. Surface currents and
charges exist in the upper conductor and from them the
port impedance matrix can be determined.

From a circuit point of view, two particular cases de-
serve consideration. In the first one (Fig. 2(c)) the genera-
tor is a dc battery and the load is an open circuit. No
current flow exists, and the sole unknown is the charge
density, whose determination allows the computation of
the capacitance of the microstrip structure. In the second
case, we have a low-frequency current generator at the
input port and a short circuit at the output port (Fig. 2(b)).
A divergenceless surface current flows through the closed
circuit. There is no surface charge and II = – 12. From the
surface current, an inductance associated with the micro-
strip structure can be determined.

(a)

I

(b)
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(c)
Fig. 2. Three possible excitations of a rnicrostrip circuit: (a)

(time-harmooic), (b) quasi-static and (c) static.
dynamic

Both cases are included in the MPIE model and give
rise, respectively, to static and quasi-static specializations
of the MPIE.

A. The Static Case

In the absence of currents, (7) becomes

e, XV~ds’G~(~l~’)q,(~’) ’=~.XE(e)(~) (12)
s

In many practical situations, it is customary to assume that
the excitation field is created by some charge distribution

f’) via the same Green’s function. Then, (12) can beq,
rewritten as

e,xv~fi’G~(~l~’) [q$e)(~’)+q,(~’)]=0 (13)
s

which implies, by integration over the tangential coordi-
nates, that

/d~’G~(plp’)[q$e)(p’) +g,(p’)] =constant=U. (14)
s

Instead of starting with an excitation charge, solving (13)
for the “scattered charge” q,, and firqlly computing the
voltage U with (14), it will frequently be easier to start by
assuming the voltage U known and considering (14)’as an
integral equation for the total charge q~e)+ q$. This last
approach follows closely the circuit representation of Fig.
2(c), and corresponds to the well-known static integral
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equation for the evaluation of capacitances. The Green’s

function to be used in (12)–(14) can be found by setting

kO = O in the general expression (10). The result is

or, expanding the sum inside the parentheses into powers

of exp ( — 2 A A ) and integrating the resulting infinite series

term by term,

[
4mogv(R) =(I-q) +-(l+q) ~ (-q)” -l+

o ~=1 n1
(16)

with

~=(%- 1)/(%+1) R:= R2 i-4n2h2.

The series (16) is the well-known partial image representa-

tion of the static Green’s function, given by Silvester [19],

while the integral representation (15) was first used by

Patel [20]. Generalizations of (15) to multilayered sub-

strates can be found in [21].

B. The Quasi-Static Case

The classical technique to obtain an approximated in-

tegral equation useful at low frequencies implies neglecting

losses and displacement currents. Taking the divergence of

(7) with Z,= O gives

j~ezv X~dS’~.(PIP’) J,(p’) =e=.v XE(e)(p)

= – jopoez.ll(e)(p) (17)

where the equivalence v. (ez x X) = ez. (V x X) has been

used. introducing now the del operator under the integra-

tion sign leads to

ez~ds~H(plp)~(p)+e,~( e)(p)=O (18)
s

where the dyadi~ Green fu=nction associated with the mag-

netic field is poGH = v X GA. According to (9), ‘its relevant

components are given by

poG~ = – 8g~/dy poG#’ = agA/a~. (19)

Equation (18) simply expresses the fact that the total

normal magnetic field must vanish on the surface of loss-

less conductors at any frequency. However, since (18) is a

scalar equation, it does not suffice in general to determine

the two components of the surface current. The second

scalar equation is obtained by neglecting the displacement

current in Maxwell’s equations. Then v X H = J and,

consequently, J, is solenoidal, i.e.,

v“~=o. (20)

The set of equations (18)–(20) defines the quasi-static

model.

As in the static case, it will sometimes be convenient to

introduce an excitation current J:’). Then, (18) is trans-

formed into

eJ~s’=H(PIP’).[ 4(P’)+ Ie)(P’)l ‘o (21)
s

and the system of equations (20) and (21) is solved taking

into account the additional condition

J
diem.~ = I (22)

c

which relates the excitation surface current to the total

current entering the structure in Fig. 2(b).

Since displacement currents are neglected, the current

distribution satisfies a static Poisson equation. Conse-

quently, to ensure the internal coherence of the model, the

Green’s functions arising in (17), (18), and (21) must be

static too. At zero frequency, (11) becomes

(4r/pO)g~(R) = 2~WdAJo(AR)(l+coth Ah)-1

(1 1
——

~–m )
(23)

which is the solution to the problem of a point source

above a ground plane. Therefore, the quasi-static model is

independent on the substrate permitivit y.

IV. THE METHOD OF MOMENTS

In order to apply the MPIE to irregular microstrip

shapes, we need a very flexible numerical technique. The

most frequent choice is a method of moments with subsec-

tional basis functions [13]. In this approach, the upper

conductor is divided into elementary domains (cells) and

the basis functions defined over each cell. We have chosen

the rectangular cell as the simplest shape still able to

provide good approximations for many practical struc-

tures. More sophisticated shapes for the cells, such as

triangles [22] and quadrangles, have been used in scatter-

ing problems and could also be applied to microstrip

problems.

We also need to select the basis functions. In general,

each component of the surface current will depend on the

two coordinates x, y, but it. is possible to use basis func-

tions which are, inside each cell, constant along the trans-

verse coordinate. This yields expansions for J,X and J,y

which are discontinuous along, respectively, y and x, but

the associated charge is still nonsingular. Basis functions

ensuring continuity of the current in any direction, such as

bilinear expansions, may be used, but the improved accu-

racy of the results is balanced by the increased difficulty of

the computations.

The choice of test functions is also a crucial matter. To

illustrate this, three possible combinations of basis and test

functions will be described (Fig. 3). Other possibilities are

given in [25].

Case A) Rooftop and Galerkin

An interesting possibility is using overlapping rooftop

functions for the two components of the surface current

(Fig. 3(a)). Then, according to the continuity equation, the

basis functions for q, are 2-D pulse doublets. The MPIE is

tested by using the same rooftop functions and this yields

a Galerkin procedure.

Define T, as the vector rooftop function associated with

two adjacent cells &+ and Si- (Fig. 4(a)). The union of
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Fig. 3. Some possible choices for the basis and test functions defined
over rectangular domains. All the two-dimensionaf functions consid-
ered are independent of the transverse coordinate.
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Fig. 4. (a) Longitudinal testing segments Ci linking the centers of
adjacents cells (Si- and ,Sj+) and (b) transverse segments (<,– and
Ci+ ) containing the line charge densities in the point-matcfung ap-
proach.

these two cells will be simply denoted by Si. In general, we

need to consider NX x-directed functions and NY y-di-

rected functions, the total number being N = NX + NY.

Therefore,

{

eXTiX i=1,2. ..NX
q.=

eYTiY i= NX+l. ..N.
(24)

The current and the charge are expanded as

i=l 1=1

where the ai are unknown coefficients and the functions

Hi= – v. ~ correspond to the pulse doublets.

Standard application of the method of moments yields a

matrix equation with the elements of the matrix given by

Zij = aij + Vij + lij (26)

where the contribution of A; V, and the ohmic losses are,

respectively,

‘ij=~~Ani(P)~ds’GV(Plp’)Hj(p’) (28)
J

‘ij=z.] d’Z(P)”~(P). (29)
s;

Notice that aij vanishes if ~ is perpendicular to ~, while

lij = O if there is no intersection between Si and ~. In

general the computation of each matrix element reqtures a

fourfold integral. Even if two integrals can be evaluated

analytically through an adequate change of variables, this

approach remains cumbersome and simpler possibilities

must be investigated.

Case B) Rooftop and Testing Along Segments

This modification has been suggested by Glisson and

Wilton [12J and successfully applied to microstrip reso-

nators and antennas [23].

The basis functions are the same as in A) but testing is

done along the segment Ci linking the centers of cells Si+

and Si- (Fig. 4(a)). Thus we get, instead of (27)-(29),

(30)

Vij= ~~ ds’IG~(p;lp’)-G~ (pIlp’)]~j(p’) (31)
J(.d ~

lij=Z~~ dl. $(p) (32)
c,

- denote the centers of the cells Si+, Si-. Thesewhere PI+, pi

expressions, simpler than (27)–(29), can be brought to

effective numerical evaluation [23].

In Section III, we have mentioned the fact that the

MPIE remains valid at low frequency and tends to the

static integral equation. However, the condition of the

matrix of moments worsens when the frequency decreases,

thus preventing accurate results. This drawback can be

removed by testing along the segments belonging to an

open tree and replacing the remaining segments by closed

loops [24]. According to Faraday’s law, a null circulation

of the electric field along closed loops is equivalent to

enforcing a zero average value of the normal magnetic

field inside the loop. Hence, the quasi-static integral equa-

tion (21) is included in the MPIE.
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Case C) 2-D Pulses and Point Matching

The simplest, but still memngful, combination of basis

and test functions expands the components of the cutrent

over a set of 2-D pulses. In order to approximately satisfy

the appropriate edge conditions on the surface current,

these pulses are defined over domains which do not coin-

cide with the original cells. Rather, each domain, symboli-

cally denoted by Si /2, is a combination of two cell’s halves

and can be considered as a two-dimensional extension of

the segment Ci (Fig. 4(b)).

The associated charges are now line charges (Dirac’s

delta functions) d&ibuted along two segnients C! and

Ci- (Fig, 4(b)). Testing the MPIE is performed by point

matching at the centers of segments Ci. Only the compo-

nent of the electric field parallel to the segment is tested. A

general matrix element is still given by (26), but now we

have

aij = ]“~ei. J ds’~~(pilp’). ej
,$/2

(33)

I,j = Z,aij (35)

where i$ij is the Kronecker symbol and ei (ej) is a unit

vector parallel to Ci(Cj).

The Numerical Integration Problem

The differences between the several combinations of

basis and test functions disappear if an inaccurate numeri-

cal integration is used. For instance, it is meaningless to

apply a Galerkin approach of type A) and then perform

the integrations in (27)–(29) by using the mean-value

theorem, because the resulting algorithm will be more like

a point-matching technique. In this sense, the technique B)

can be considered a particular version of A) using a rather

loose integration technique.

A simplification of technique B) uses for the current 2-D

pulses instead of ro~ftop functions, while keeping the 2-I)

pulse doublets for the charge [12], [13]. The continuity

equation is no longer satisfied, but the approach can be

justified on numerical grounds as being technique B) with

an approximate surface integration.

V. MATHEMATICAL TREATMENT OF THE

EXCITATION

The excitation fields are seldom known in a direct way,

except in a, few cases, such as exciting with a plane wave or

with a series voltage gap generator (very unpractical in

microstrip). Therefore, the excitation fields must usually be

computed from a given distribution of currents arid charges.

The simplest model for the excitation is a vertical filament

of unit current (Dirac’s delta) acting on some point of the

upper conductor. This model is a first-order approxima-

tion of real-world coaxial pins but can only be used’ with

the method of moments of the type A), where the testing

integrations suffice to smooth out the delta’s singularity.

For techniques B) and C), a more accurate model of the

coaxial probe has been developed in [23].
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(c)

Fig. 5. (a) Microstrip discontinuity showing the incident and reflected
waves in the feed line. (b) Approximate model totally neglecting ti,e
feed line. (c) Approximate model partially neglecting the feed line. In
both (b) ad ~~) the field snal$is yi~ds ‘Zim, ‘&d the reflection
coefficient is estimated as ( Zim – ZC)\( Zi~ + ZC), ZC being the char-
acteristic impedance of the feed line.

Concerning microstrip-fed structures (Fig. 5(a)), there

are several possibilities. The most obvious one neglects the

microstrip line in the field analysis and uses a vertical

filament at the insertion point in the edge of the patch

(Fig. 5(b)). Hence, the mathematical excitation is ~ =

eztl(z). A better possibility, including discontinuity effects

in the insertion zone, is to include a finite section of the

microstrip line in the field analysis and to introduce a

series current generat~r at the point where the line has

been truncated (Fig. 5(c)). The generator can be mathe-

matically described by a half-rooftop function bearing a

unit current.

These models for the excitation lead to values of the

input impedance. A more rigorous approach yielding di-

rectly the value of the reflection coefficient would require

special basis functions to represent the incident and re-

flected quasi-TEM waves on the semi-infinite feed l&e

[111..-
VI. NUMERICAL RESULTS

A. The Linear Resonator

In order to study the convergence of the results with the

number of longitudinal cells, we consider first an open-cir-

cuited microstrip line resonator with aspect ratio L/w =
37.4 and C,= 1 (Fig. 6). Since this is a very narrow patch,

only longitudinal currents are considered. The numerical

algorithms of Section IV, labeled as before A), B), and C),

are applied with one cell along the transverse direction and

N cells along the longitudinal coordinate. For a fixed N,

the modulus of the determinant of the moments’ matrix

shows a sharp minimum at the resonance. Fig. 6 gives the
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Fig. 6. The narrow linear resonator: convergence of the resonant
frequency as a function of the number N of cells for the three
techniques of Section IV.

normalized resonant frequency as a function of I/N. This

allows graphical extrapolation for the case N = co.

Techniques B) and A) both converge quickly to an

extrapolated frequency L/A ~ = 0.459, which can be con-

sidered “numerically exact.” The relative error for N = 8 is

0.9 percent for the testing-along segments algorithm B)

and only 0.1 percent for the Galerkin’ algorithm A). On the

other hand, point matching C) converges rather slowly and

the extrapolated value for infinity is slightly different

(L/AO = 0.466). From the point’ of view of computation

time, B) is three times slower and A) seven times slower

than C). Hence the algorithm B) represents a good com-

promise and cells of length 0.05A ensure accuracy of 1

percent.

Fig 6 also gives results on a modification of algorithm B)

which allows for a transverse variation of the longitudinal

current, This modification, denoted B*), accounts for edge

effects, with a dependence of the type [1 – (2 y/w) 2] 1/2.

The predicted resonant frequency changes only by 0.7

percent, and this difference becomes even smaller if more

th~ one cell is allowed in the transverse direction.

B. The Rectangular Patch

The second test case is a wide rectangular patch of

length L =150 mm and aspect ratio L/w= 2 (Fig. 7). The

substrate parameters are h = 3.175 mm, c,= 2.56, and

tanti = 0.0015.

The patch is excited by a coaxial probe at ‘ x =

58.33 mm, y = 37.5 mm. To study the relevance of -the

number of transverse cells, numerical tests were made with

a number of cells fixed along x (N= 9) and variable along

y (M= 3,5, 7). Results for the input impedance near the

resonance are presented in the Smith chart of Fig. 7. The
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Fig. 7. The rectangular patch: convergence of the input impedance as a
function of the number of cells in the transverse direction (615-635
MHz),

extrapolated (M= co) value of the resonant frequency is

628.9 MHz. The error is 0.2 percent for M = 7 and still

only 0.7 percent for M = 3. This shows that-the boundary

condition imposing infinite values for the current density

at the lateral edges can be neglected in the numerical

treatment of wide patches, without appreciable loss of

accuracy. It is also worth mentioning that all the points in

Fig. 7 are almost cm the same curve. This means that the

impedance level is almost independent of the number of

transverse cells, M >3 being enough for engineering accu-

racy.

The rectangular patch was also analyzed well below the

resonance for frequencies ranging from 50 to 500 MHz.
The input impedance R + jX normalized to 50 L! is plotted

in Fig. 8. In addition to a small real part, which accounts

for ohmic losses, dielectric losses, and radiation, there is a

reactance whose limiting value at low frequency is – I/uCO

(dashed line), CO being the static capacitance of the patch

[12].

C. The L-Shaped Patch

To illustrate the performance of the MPIE when dealing

with irregular shapes, we have selected an L-shaped patch

(Fig. 9(a)). Its dimensions are a = b =56 mm, and c= d =

28 mm. The substrate parameters are c,= 4.34, tan 8 = 0.02,
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Fig. 8. Normalized input impedance Z = (R + jX)\50 !il of a rectan-
gular patch. The static approximation Zs l\j@CO is @en by the
dashed line.
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Fig. 9. ,~e L-shaped microstrip patch. (a) Decomposition into elemen-
tary cells showing the coaxial-fed ports ,4, B, C. (b) Equivalent circuit
at low frequency for a two-port excitation (,4 and B). (c) Equivalent
circuit near resonance for an one-port excitation (C).

and h = 0.8 mm, and the patch is divided into 75 square

cells.

We looked first for higher order resonances, exciting the
patch with a coaxial probe C located at x = 2.8 mm,

y = 2.8 mm. Two resonances were found, at 1.555 GHz

and 2.536 GHz. A first resonance, at 0.998 GHz, is missed
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Fig. 10. Real (in-phase) and imaginary (in quadrature) parts of the
surface current existing in the L-patch at the second resonance. The
maximum value of the current corresponds to the longest arrow.
Excitation current in the coaxial is 1 + jO A.

due to the symmetrical location of the coaxial probe. Fig.

10 gives a vector representation for the real and ima>nary

parts of thesurface current density when thetotalexcita-

tion current entering the patch is normaltied to 1 + jO A.

As in any resonating situation, the imaginary part is

Wronger and its pattern is independent of thi coaxial

position. On the other hand, the real part, neglected in

many microstrip models, corresponds to near-field effects

created by the coaxial probe. This real part can modify

greatly the input reactance values, mainly in weti reso-

nances.

The input impedance at the second resonance is given in

Fig. 11 and compared with measurements. The theoretical

predictions are very good, with an error of only 1 percent

in the resonant frequency, 4 percent in the maximum

resistance, and a slight difference in the reactance values.,

The patch behaves as a par~lel resonant circuit with a

small series reactance due to the probe (Fig. 9(c)). The
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Fig. 11.

. THEORY

■ MEAS

Input impedance of the L-shaped patch near the second reso-
nance (1.4–1.7 GHz): ● = theory, ■ = measurements.
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Fig. 12. Normalized series impedance Z.= (R+ jX)/50 L? of an L-
shaped patch below the first resonance (see the equivalent circuit of

Fig. 9(b)). The dashed line represents the quasi-static approximation
Z, s jcoLo150 Q.

elements of the equivalent circuit are easily obtained from

the input impedance values of Fig. 12.

We have also considered the L-shaped patch as a two-

port network with coaxial excitations at points A (XA =

8.4 mm, y~ = 47.6 mm) and B (XB = 47.6 mm, y~ =

8.4 mm). At low frequency, the patch behaves as a micro-

strip bend discontinuity and we can assume the equivalent

circuit of Fig. 9(b). The normalized values of the series

impedance R(o) + jX( O) and of the parallel admittance

G(u) + jB(ti) are given in Figs. 12 and 13. Again, the

MPIE predicts correctly the frequency behavior of the

structure. In particular, as the frequency goes to zero the

reactance and susceptance values tend toward, respec-

0
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100 G
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50

Fig. 13. Normalized paraflel admittance Y = (G + jlf) X 50 Q of an

(L-shaped patch below the first resonance see the equivalent circuit of
Fig. 9(b)). The dashed fine represents the static approximation ~ ~
jfdCO X50 $2.

tively, the quasi-static values OLO and tiCO, obtained with

(14) and (21).

VII. CONCLUDING Rmmms

The mixed potential integral equation has been found to

be a very convenient tool for studying microstrip struc-

tures. Combined with a method of moments using subsec-

tional basis, this technique can easily analyze conductors

of irregular shape. Also, the MPIE remains valid at any

frequency and can be used for studying higher order

resonances as well as for characterizing microstrip discon-

tinuities well below the first resonance. Thus, the tech-

niques described in this paper are particularly useful for

problems where the frequency is too high for assuming a

quasi-static situation, but still too low for computing the

fields as expansions over the resonant modes.

In this paper, we have also pointed out the connections

existing between the MPIE and other models used for

microstrip. In particular the well-known static and quasi-

static integral equations are embedded in the MPIE, and

this explains why the proposed algorithms are successful in

providing first-order corrections to static capacitances and

steady-state inductances.

Convergence studies have shown that cells of linear

dimensions 0.05 X already give good results. Under this

condition, accurate theoretical values are obtained for

resonant frequencies, quality factors, and input imped-

ances of patch resonators. For discontinuities, the opti-

mum cell size to obtain an accurate equivalent circuit is

mainly related to the geometry of the upper conductor.

The MPIE includes surface waves and radiation. Multi-

layered substrates can be accommodated by suitable mod-

ifications of the Green’s functions. Handling multiple con-

ductors at different levels (stacked patches) is only a
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matter of increasing the number of unknowns. Finally,

there are no theoretical restrictions to the substrate thick-

ness, though some of the excitation models discussed should

be improved to maintain good accuracy in the thick sub-

strate case.

The techniques of this paper can be applied to obtain

the equivalent circuit of any microstrip discontinuity. Ex-

citing the discontinuity y with two lines of finite length, we

get a combined geometry whose transmission or chain

matrix T is obtained with the MPIE. Since the chain

matrices To of each line are known, the chain matrix of the

discontinuity TD satisfies the relationship T= TOTDTOand
can be easily obtained. Work is in progress and results will

be reported in the near future.
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